Network Security and Forensics
CSEC.462.01

Student: Wissam El Labban

Table of contents

Step 1
What does the default firewall in Ubuntu look like?
Explanation of output
The NAT table
Step 2
Pinging the ubuntu machine from kali
Setting the iptables rules on Ubuntu
Testing that ubuntu does not get pings and explanation of observations
Step 3
SSH download
Adding and testing the two rules
Will this work?
Adding and testing the two rules in reverse order
Will this work now?
Step 4
What does this do?
Is this rule triggered before or after the other rules we see?
Step 5
Finding the kali mac address
Setting up the filter table and the complete command
Testing the ruleset
Step 6
Rebooting and seeing what happens to the firewall
Adding a rule and saving it
Rebooting and restoring rules
References

© NO OO b WN =

N e N N N i L N U U G
©W 00 00 NN O b pbowWwwWwWw- 0O ©

Step 1

student@student-virtual-machine:~$ sudo ip neigh flush all
[sudo] password for student:
student@student-virtual-machine:~$ sudo arp -a
student@student-virtual-machine:~$ sudo arp

student@student-virtual-machine:~$ I

Cleared the ARP table on the ubuntu machine.

What does the default firewall in Ubuntu look like?

root@student-virtual-machine:~# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:~#

Iptables -L output in above shows the default firewall in ubuntu.

Explanation of output

There are Chains which are a sequence of rules that apply to packets that meet certain criteria.
There are three built-in chains in this table: INPUT, FORWARD, and OUTPUT.

e Input filters packets that are destined for the local system.
e Output filters packets that are sent to remote systems from the local system

e Forward filter packets that are routed through the local system to another destination (this
is the kind of chain in [Ptables that routers would use).

Target under each chain shows what actions are taken if the Packets fall under those categories.
Target has actions like ACCEPT, DROP, and REJECT. However, we are not seeing any of those
here.

The reason is because this is the default configuration of the Ubuntu machine where there are no
rules defined. All three chains have ACCEPT as their default policy which means that all packets
that are either generated by the machine, have the machine as the destination, or go to get
forwarded by the machine (even though it cannot forward them since [PTables should have NICs
and ipv4 forwarding manually configured to forward packets) will be accepted and are allowed
to proceed.

The NAT table

root@student-virtual-machine:~# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:~# I

The above screenshot shows the output of “iptables -t nat -L”. This is the nat table from the
iptables and there is a prerouting chain that was not available on the filter table. The prerouting
chain applies the given rules on a packet before it is routed to its final destination. Some tables
have the prerouting chain in them while filter doesn’t. Like the filter table, our output has no
rules and all policies are ACCEPT by default.

Step 2

Pinging the ubuntu machine from kali

: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1600
link/ether 00:50:56:b0:24:01 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.103/24 brd 192.168.1.255 scope global noprefixroute ens160
valid_1ft forever preferred_1ft forever

inet6 feBO::77d0:4200:39:bdob/64 scope link noprefixroute
valid_1ft forever preferred_1ft forever
root@student-virtual-machine:~#

Ip address of ubuntu machine is 192.168.1.103

> mtu 65536 qdisc noqu ate UNKNOWN group default glen 1eee
: B brd e0:00:00:

valid Lt fo rer red 1t forever
inet6é ::1/128 scope host
valid 1f e eferred 1t T VE
2: ethe: ? AST, ST,UP,LOWER UP> mtu 1588 gdisc mg state UP group default glen 1ese
J :3b:T1 brd ff:ff:ff:Ff:Ff:FF
brd 192.168.1. ope global ethe

ineté feBb::2
valid 1Tt forever
.#I

The ip address of the kali machine is 192.168.1.104

:~# ping 192.168.1.183 -cB8
2.168.1.103 (192.168.1.103) 56(84) byte

from 192.16 - =T ttl=64

from - .183: icm =2 1tl=64

Tfrom 51 1.183: 5 ttl=64

from B3: icmp

from 192. 1. 3: icmp

from . .183: icmp

from .168.1.103: icmp_s

from 192.168.1.1683: icmp seq=8

-- 192.168.1.183 ping statistics ---
packets transmitted,
rtt min/favg/max/mdey =

Pinging the ubuntu from the kali machine is no problem.

Setting the iptables rules on Ubuntu

root@student-virtual-machine:~# iptables -A INPUT -p icmp -j DROP
root@student-virtual-machine:~#

Dropping all incoming ICMP packets with the command above.

root@student-virtual-machine:~# iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination
DROP icmp -- anywhere anywhere

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:~# I

I have verified that it is on the filter table now.

Testing that ubuntu does not get pings and explanation of
observations

:~# ping 192
PING 192.168.1.103 (192.168.1.183) 56(84) bytes of data.

192.168.1.1683 ping
8 packets transmitte

time 7152ms

#*1

As you can see, there are no ICMP messages being replied back from the ubuntu machine.

root@student-virtual-machine:~# tcpdump -i ens160

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ens160, link-type EN10MB (Ethernet), capture size 262144 bytes

20:44:00.598079 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq 1, length
.615428 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq length
.639510 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq length
.663457 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq length

4.687392 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq length

.679420 ARP, Request who-has student-virtual-machine tell 192.168.1.104, length 46
.679442 ARP, Reply student-virtual-machine is-at 00:50:56:b0:24:01 (oui Unknown), length 28
.711373 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq 6, length
.735444 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq 7, length
.759540 IP 192.168.1.104 > student-virtual-machine: ICMP echo request, id 1651, seq 8, length

10 packets captured

10 packets received by filter

0 packets dropped by kernel
root@student-virtual-machine:~# I

However, when I use tcpdump on the ubuntu machine, I can see that there are ICMP packets
that are being received despite my iptables rule. That's completely fine.

* End User layer

Application bl

* Syntax layer

Presentation * SSL, SSH, IMAP, FTP, MPEG, JPEG

* Synch & send to port

SeSS|0n * API’s, Sockets, WinSock

* End-to-end connections

Transport * TCP, UDP

Packets
IP, ICMP, IPSec, IGMP

Frames
Ethernet, PPP, Switch, Bridge

* Physical structure
* Coax, Fiber, Wireless, Hubs, Repeaters

Physical

Tepdump works on the data link layer while iptables works on the network layer. This means that
even though the packets are being dropped by iptables, they are still going through the data link
layer of the ubuntu machine and are still visible on tools like tcpdump before they are dropped
by iptables on the network layer.

Step 3

SSH download

root@student-virtual-machine: /etc# apt-get install openssh-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
libdumbnet1
Use 'apt autoremove' to remove it.
The following additional packages will be installed:
ncurses-term openssh-sftp-server ssh-import-id
Suggested packages:
molly-guard monkeysphere rssh ssh-askpass
The following NEW packages will be installed:
ncurses-term openssh-server openssh-sftp-server ssh-import-id
0 upgraded, 4 newly installed, @ to remove and 14 not upgraded.
Need to get 637 kB of archives.
After this operation, 5,320 kB of additional disk space will be used.
Do you want to continue? [Y/n] ¥y
Get:1 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 ncurses-term all 6.1-1ubuntul.18.04 [248 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 openssh-sftp-server amd64 1:7.6pl-4ubuntu®.7 [45.5 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 openssh-server amd64 1:7.6p1-4ubuntu®.7 [332 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 ssh-import-id all 5.7-6ubuntuil.1 [16.9 kB]
Fetched 637 kB in 0s (4,224 kB/s)
Preconfiguring packages ...
Selecting previously unselected package ncurses-term.
(Reading database ... 149509 files and directories currently installed.)
Preparing to unpack .../ncurses-term_6.1-1ubuntul.18.64_all.deb ...
Unpacking ncurses-term (6.1-1ubuntu1l.18.04) ...

Downloaded ssh

root@student-virtual-machine: /etc# service ssh start
root@student-virtual-machine: /etc# service ssh status
@ ssh.service - OpenBSD Secure Shell server
Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)
Active: active (running) since Sat 2023-02-18 21:14:05 EST; 14min ago
Main PID: 4873 (sshd)
Tasks: 1 (limit: 4679)
CGroup: /system.slice/ssh.service

L-4873 fusr/sbin/sshd -D

18 21:14:05 student-virtual-machine systemd[1]: Starting OpenBSD Secure Shell server...

18 21:14:05 student-virtual-machine sshd[4873]: Server listening on 0.0.0.0 port 22.

18 21:14:05 student-virtual-machine sshd[4873]: Server listening on :: port 22.

18 21:14:05 student-virtual-machine systemd[1]: Started OpenBSD Secure Shell server.
root@student-virtual-machine: /etc# [J

Started ssh service

10

Adding and testing the two rules

After flushing the iptables with the iptables -F command. I did the following.

root@student-virtual-machine:~# iptables -A INPUT -j REJECT
tudent-virtual-machine: iptables -A INPUT -p tcp --dport 22 -j ACCEPT
tudent-virtual-machine:-# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
REJECT all -- anywhere anywhere reject-with icmp-port-unreachable
ACCEPT tcp -- anywhere anywhere tcp dpt:

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain QUTPUT (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:-# I

The first command in the image above will reject all incoming traffic.
The second command is adding an acceptance rule to tcp on port 22.

The filter table shows those changes in effect.

Will this work?

Since the reject rule is coming first, the accept rule will never come into play since it is
processed after the reject rule.

.168.1.183
3.1.183 port 22: Connection refused

I cannot ssh into the ubuntu machine from kali.

11

Adding and testing the two rules in reverse order

root@student-virtual-machine:~# iptables -F
root@student-virtual-machine: iptables -A INPUT -p tcp --dport 22
root@student-virtual-machine:~# iptables -A INPUT -j REJECT
t@student-virtual-machine:~# iptables -L
Chain INPUT (policy ACCEPT)
target prot L source destination
ACCEPT tcp - anywhere anywhere tcp dpt:ssh
REJECT allt - anywhere anywhere reject-with icmp-port-unreachable

Chain FORWARD (poli ACCEPT)
target prot opt source destination

Chain QUTPUT (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:-#

I flushed the iptables and put the rules in the reverse order this time.

Will this work now?

Since the accept rule is being processed before the reject rule, I should be able to ssh into the
ubuntu machine now.

(GNU/Linux 4.15.8-55-generic x86 64)
ation: Lp.ubuntu. com

L4

L stallation.
and improve kernel security. Activate at:
epatch

can be updated.
are security updates.

ct to https chang S.ubuntu.com/meta-r e-1ts. Check your Internet connection or pr

12

Surely, I was able to SSH into the ubuntu machine this time.

student@student-virtual-machine:~% exit
gout

Connection to 192.168.1.

:~# ping 192.1
PING 192.168.1.103 (192.168.1.103) 56(84) bytes of data.
From .168.1.183 icmp Destination Port Unreachable
From .168.1.183 icmp seq=2 Destination Port Unreachable
From .168.1.183 1cmp 3 Destination Port Unreachable

2.168.1.103 icmp seq=4 Destination Port Unreachable

+4 errors, 180% packet loss, time 3861ms

#

I tried pinging after that to test that all other packets are rejected except for tcp on port 22. Surely
it was the case.

13

Step 4

root@student-virtual-machine:~# iptables -t mangle -A PREROUTING -p tcp -m tcp --tcp-flags SYN NONE -j DROP
root@student-virtual-machine:~# [J

What does this do?

The -t mangle options shows that this command will work with the mangle table which is used to
alter packets.

-A PREROUTING means that we are adding a new rule to the prerouting chain which is a chain
used to modify incoming packets before they route to their final destination.

The command is only going to apply to TCP packets since -p tcp is being used. The conditions
for the packets are if the tcp packets have a SYN flag set to NONE meaning that the packet is not
part of an established connection.

-j DROP in this command means that the machine will drop a TCP packet with a SYN flag set to
NONE.

It is important to note that the -t mangle cooperation is not actually doing anything in the context
of this command since the mangle table is associated with manipulation of packet headers. The
command could do the same job without that operation included since there is no actual packet
manipulation going on in this command. The command is simply dropping TCP packets that
have a SYN flag set to NONE. It is not manipulating those packets.

Is this rule triggered before or after the other rules we see?

This command is in the prerouting chain which gets triggered before other chains in the mangle
table. It is also in the mangles table which is processed before the filter table in the processing
flow of iptables since advanced packet manipulation is done before filtering. The rule in this
command will be triggered before all the other rules we issued before.

14

Step 5
Finding the kali mac address

¢ ifeonfig
flags=4163<UP, BROADCAST ,RUNNING ,MULTICAST= mtu 15080
inet 192.168.1.104 netmask 255.255.255.8 broadc
3 prefi
:3b:f1 txqueuvelen 1068
bytes 189988 (185.5 KiB)
dropped 38 overruns @ frame @
bytes 32194 (31.4 KiB)
s @ dropped @ overruns @ carrier 8@ collisions @

5=73=UP,LOOPBACK , RUNNING= mtu 65
inet 127.8.8.1 netmask 255.8

ineté ::1 prefixle L eid 8xl18<host>
1 xqueuelen 1800 (Local Loopback)
2.8 KiB)
dropped @ overruns @ frame @
bytes 2898 B KiB)
dropped @ overruns @ carrier @ collisions @

The mac address of the kali machine is 00:50:56:b0:3b:f1

15

Setting up the filter table and the complete command

root@student-virtual-machine:-# iptables -A INPUT -m mac --mac-source @8: 6:b@:3b:f1 -j ACCEPT
A INPUT -§ REJECT
:=# iptables -L

Chain INPUT (
target prot opt s ce destination

ACCEPT all -- anywhere anywhere 1 38:56:B08:3B:F1

REJECT all -- anywhere anywhere reject-with icmp-port-unreachable

chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (polic EPT)
target prot opt urce destination
root@student-virtual-machine: ~

[used the complete command is the first command in this screenshot. I have the reject all
packets rule set after that commands rule. This combination will make it so that only the kali
machine can ping the ubuntu machine. All other machines will just have their ICMP packets
rejected.

Testing the ruleset

ping 192.168.1.103 -c4
192.168.1.1683 (192.168.1. 1f ytes of data.
64 bytes from 192. .183: icmp i time=0.471
64 bytes Trom 192. .103: icmp =2 ttl=64 time=0.522
f rom .183: icmp 3 ttl=64 time=0.51
from 1¢ 68.1.1083: icmp_s 4 ttl=64 time=8.558

-= 192.168.1.

4 packets transmitted, 4 received, 0% packet loss, time 3079ms
rtt minfavg/max/mdev = 8.471/8. 1 558/0.828

1

The kali machine can definitely ping the ubuntu machine now unlike before.

16

Pinging 1922.168.1.183 with 32 bytes of data:

Reply from 192.168.1.183: Destination port unreachable.
Reply from 192.168.1.183: Destination port unreachable.
Reply from 192.168.1.183: Destinmation port unreachable.
Reply from 122.168.1.183: Destination port unreachable.

Ping statistics for 192.168.1.183:
Packets: Sent = 4, Received = 4, Lost = B (B2 loss).
PS C:N\Users\student> _

When I try to ping from the windows machine however, I get the port unreachable message.

Step 6

Rebooting and seeing what happens to the firewall

root@student-virtual-machine:-# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chaln FORWARD (policy ACCEPT)
target prot opt source destination

Chain OQUTPUT (policy ACCEPT)

target prot opt source destination
root@student-virtual-machine:-# iptables -t mangle -L
Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT {policy ACCEPT)
target prot opt source destination

chain POSTROUTING (policy ACCEPT)
target prot opt source destination
root@student-virtual-machine:~# I

After rebooting, all the rules that I set in both filter and mangle tables are gone.

18

Adding a rule and saving it

root@student-virtual-machine:~# iptables -A INPUT -m mac --mac-source 00:50:56:b@:3b:f1 -j ACCEPT
root@student-virtual chine:-# iptables -L
Chain INPUT (policy EPT)
prot opt source destination
anywhere anywhere \C 50:56:B0:3B:F1

hain FORWARD (policy ACCEPT)

arget prot opt s destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination
tudent-virtual-machine:~# iptables-save > fetc/iptables.rules

root@student-virtual-machine:~#

I re-added the rule where the kali machine can ping me and used the iptables save command. I
then rebooted the machine again.

Rebooting and restoring rules

t tual-machine:-# iptables -L
Chain INPUT (p CEPT)
target prot opt source destination

Chaln FORWARD (policy ACCEPT)
target prot opt source destination

OUTPUT (policy ACCEPT)
prot opt source destination
student-virtual-machine:-# iptables-restore = jetc/iptables.rules
root@student-virtual-machine:~# iptables -L

chain INPUT (policy ACCEPT)
target prot opt source destination
all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt urce destination
root@student-virtual-machine:~g

After rebooting the machine, the rule was gone, but after I used the restore command the rule
returned.

19

It is worth noting however that there is a package called iptables-persistent that allows saved
rules to stay after reboot. That way iptable rules can always stay without the hassle of having to
use crontab to run a script that restores the rules on reboot or manually doing it yourself.

References

https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-iptables.html

https://www.digitalocean.com/community/tutorials/how-the-iptables-firewall-works

get-its-info-from

https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules

https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-iptables.html
https://www.digitalocean.com/community/tutorials/how-the-iptables-firewall-works
https://www.csie.ntu.edu.tw/~b93070/CNL/v4.0/CNLv4.0.files/Page697.htm
https://unix.stackexchange.com/questions/23060/what-level-of-the-network-stack-does-tcpdump-get-its-info-from
https://unix.stackexchange.com/questions/23060/what-level-of-the-network-stack-does-tcpdump-get-its-info-from
https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules

